

Notice	and	Disclaimer

The	recommendations,	best	practice	guides,	tuning	examples	(together	"Best	Practices")	as	well	as	sample
code,	scripts	(together	"Sample	Code",	collectively	with	the	Best	Practices	is	"Content")	contained	herein	are
the	property	of	Couchbase,	Inc.	("Couchbase")	and	are	provided	for	illustrative	and	instructional	purposes
only.	The	user	of	the	Content	acknowledges	and	accepts	that	the	Content	is	not	supported	by	any	license
agreement	between	Couchbase	and	the	user.

The	Content	may	not	be	reproduced,	disseminated,	sold,	sub-licensed,	assigned,	rented	leased,	distributed
or	otherwise	published,	in	whole	or	in	part	without	prior	written	permission	from	Couchbase.

The	user	of	the	Source	Code	assumes	the	entire	risk	of	any	use	it	may	make	or	permit	to	be	made	of	the
Source	Code	and	is	solely	responsible	for	adequate	protection	and	backup	of	its	data.	Couchbase	reserves
the	right	to	make	changes	to	the	Source	Code	or	Best	Practices	at	any	time	without	prior	notice.	ALWAYS
thoroughly	evaluate	Sample	Code	using	test	data	to	ensure	proper	operation	and	confirm	the	Sample	Code
causes	no	adverse	effects	prior	to	use	on	live	or	production	data.

Couchbase	hereby	reserves	all	rights	in	the	Content	under	the	copyright	laws	of	the	United	States	and
applicable	international	laws,	treaties,	and	conventions.

THE	CONTENT	HEREIN	IS	PROVIDED	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR
PURPOSE	ARE	DISCLAIMED.	WITHOUT	LIMITING	ANY	OF	THE	FOREGOING	AND	TO	THE	MAXIMUM
EXTENT	PERMITTED	BY	APPLICABLE	LAW,	IN	NO	EVENT	SHALL	Couchbase	OR	ITS	CONTRIBUTORS
BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR
SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	SUSTAINED	BY	YOU
OR	A	THIRD	PARTY,	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THE	CONTENT,
EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.	The	foregoing	shall	not	exclude	or	limit	any
liability	that	may	not	by	applicable	law	be	excluded	or	limited.

Use	of	or	access	to	Couchbase	products	or	services	requires	a	separate	license	from	Couchbase.

Notice	and	Disclaimer

3Couchbase	Professional	Services

Support	Best	Practices

This	section	describes	how	to	best	interact	with	Couchbase	Technical	Support	and	how	to	work	as	your	own
internal	support.

Working	with	Support
To	speed	up	the	resolution	of	your	issue,	support	will	need	some	information	to	troubleshoot	what	is	going
on.	The	more	information	provided	in	the	questions	below	the	faster	support	will	be	able	to	identify	the	issue
and	propose	a	fix:

Priority	and	impact	of	the	issue	(P1	and	production	impacting	versus	a	P2	question)
What	versions	of	the	software	are	you	running,
Operating	system	version	and	deployment	(physical	hardware,	Amazon	EC2,	Kubernetes,	etc.)
What	steps	led	to	the	failure	or	error?
Information	around	whether	this	is	something	that	has	worked	successfully	in	the	past	and	if	so	what	has
changed	in	the	environment	since	the	last	successful	operation?
Provide	us	with	a	current	snapshot	of	logs	taken	from	each	node	of	the	system	and	uploaded	to	our
support	system	via	the	instructions	below
If	your	issue	is	a	P1	and	urgent,	you	must	make	a	phone	call	as	well	as	opening	a	support	request.	The
phone	call	will	ensure	that	your	Initial	Response	Goal	is	met.	Support	phone	number:	+1-650-417-7500,
option	#1

We	define	our	Support	Request	priorities	in	the	following	way:

P1:	Software	failures	on	a	production	system	that	cause	complete	loss	or	severe	outage	of	service,	resulting
in	a	mission-critical	business	application	being	down	or	non-operational.

P2:	Software	failures	on	a	production	system	that	cause	partial	loss	of	service	impacting	business
operations.	Operations	can	continue	in	a	restricted	fashion	and	a	workaround	may	be	used	to	restore
functionality.	As	to	a	non-production	system,	a	software	failure	that	causes	a	complete	loss	or	severe	outage
of	service	where	there	is	a	time-sensitive	impact	to	a	planned	production	deployment.

P3:	All	non-time	sensitive	requests	including	product	functionality	issues	in	Development	or	Test,	feature
requests	and	documentation	clarifications.

SLAs

Silver Gold Platinum

Hours 10	x	5 24	x	7 24	x	7

Hours	of	Operation 7am	-	5pm 24	x	7 24	x	7

Support	Channel Email,	Web,	Phone Email,	Web,	Phone Email,	Web,	Phone

Number	of	Cases Unlimited Unlimited Unlimited

P1	SLA 5	hours 2	hours 30	minutes

*

**

Support	Best	Practices

4Couchbase	Professional	Services

P2	SLA 1	Business	Day 5	hours 3	hours

P3	SLA 5	Business	Days 3	Business	Days 1	Business	Day

Within	geo	time	zone,	based	on	customer	location:	EST	-	Americas,	East	Coast;	PST	-	Americas	other
than	East	Coast;	GMT	-	EMEA;	IST	-	APAC
Within	business	hours

Opening	a	ticket

There	are	two	ways	to	create	a	Couchbase	Technical	Support	ticket:	the	web	portal	and	a	phone	call.

Web	Portal

https://support.couchbase.com

Phone	Call

Support	phone	number:	+1-650-417-7500,	option	#1

Uploading	logs

Server	logs

For	nearly	every	ticket	that	gets	generated,	support	will	need	to	be	able	to	review	the	logs	for	the	Couchbase
server	cluster.	Below	is	how	to	collect	and	upload	those	logs.

Collecting	logs	via	the	web	console	UI

The	logs	can	be	generated	in	the	web	console	UI:

1.	 Click	Log
2.	 Click	Collect	Information	

3.	 To	upload	the	collected	logs	to	us,	please	tick	the	Upload	to	Couchbase	checkbox	and	use	the
following	values:

Upload	to	host:		uploads.couchbase.com	
Customer	name:	``

*

**

Support	Best	Practices

5Couchbase	Professional	Services

https://support.couchbase.com

Ticket	number:	``

Collecting	server	logs	via	the	command-line

Or	you	can	use	the		cbcollect_info		command	(with		sudo		on	Linux)	to	gather	the	logs	and	then
upload	them	to	us	with	the		curl		command:

Example	usage:

Linux	(run	as	root	or	use	sudo	as	below)

sudo	/opt/couchbase/bin/cbcollect_info	<node_name>.zip

Windows	(run	as	an	administrator)

C:\Program	Files\Couchbase\Server\bin\cbcollect_info	<node_name>.zip

Run	cbcollect_info	on	all	nodes	in	the	cluster,	and	upload	all	of	the	resulting	files	to	us.

curl	--upload-file	<FILE	NAME>	https://uploads.couchbase.com/<customer>/<tic

ket	number>/

Please	note	that	the	trailing	slash	(/)	is	required	in	the	upload	URL	for	a	successful	upload	of	the	logs.

Sync	Gateway	logs

Introduced	in	Sync	Gateway	1.3,	the	sgcollect_info	tool	provides	a	method	to	collect	and	upload	logs	to
Couchbase	Support.		sgcollect_info		can	be	run	from	the	command-line	as	per	the	example	usage
below.	You	can	find	full	details	on	using	the	built-in	Upload	functionality	in	the	documentation,	or	you	can
share	the	output	manually	using	the		curl		command	below.

Linux	(run	as	root	or	use	sudo	as	below)

sudo	/opt/couchbase-sync-gateway/tools/sgcollect_info	<node_name>.zip

Windows	(run	as	administrator)

Program	Files	(x86)\Couchbase\tools\sgcollect_info.exe	<node_name>.zip

Sync	Gateway	1.2	and	earlier:

If	running	a	version	of	Sync	Gateway	earlier	than	1.3,	you	can	still	collect	and	share	the	log	files	with	us
manually.
Sync	Gateway	allows	a	great	degree	of	flexibility	on	how	logging	is	configured	,	so	the	location	of	these
logs	will	depend	on	your	specific	deployment.
As	well	as	Sync	Gateway's	logs,	the	Configuration	File	used	in	your	deployment	will	help	us	gain	a	better

Support	Best	Practices

6Couchbase	Professional	Services

https://developer.couchbase.com/documentation/mobile/current/guides/sync-gateway/sgcollect-info/index.html
https://developer.couchbase.com/documentation/mobile/current/guides/sync-gateway/sgcollect-info/index.html

understanding	of	the	situation	and	any	potential	issues.

To	upload	the		sgcollect_info		logs,	please	use	the	command	below:

curl	--upload-file	<FILE	NAME>	https://uploads.couchbase.com/<customer>/<tic

ket>/

Please	note	that	the	trailing	slash	(/)	is	required	in	the	upload	URL	for	a	successful	upload	of	the	logs.

Please	see	the	Couchbase	Server	Logs	and	Sharing	Files	with	Us	sections	of	our	Working	with	Couchbase
Technical	Support	guide	for	more	details.

Application	Logs

Depending	on	the	type	of	ticket	it	may	also	be	necessary	to	upload	logs	from	the	client	application	including
the	client	SDK	logs.	The	way	you	configure	logging	in	each	language	is	a	little	different.	See	the	links	below
for	your	specific	language.	At	a	minimum	you	should	have	your	applications	configured	to	collect	at	the	INFO
level.	They	applications	should	be	written	in	a	way	that	the	log	level	can	be	updated	without	having	to	restart
the	application.

Java
Python
.Net
PHP
C
Go
Node.js

There	may	be	times	when	engineering	asks	that	the	log	level	be	updated	to	DEBUG	or	possibly	TRACE.	At
that	time	the	log	level	would	need	to	be	updated	to	the	requested	level,	the	logs	collected	and	then	if
appropriate	the	log	level	returned	to	INFO.	It	is	important	that	if	it	is	possible	to	reproduce	the	error	that
prompted	creation	of	the	ticket	that	it	is	reproduced	during	log	collection	at	the	higher	log	level.

Once	the	logs	are	collected	it	is	not	necessary	for	them	to	be	zipped	together	into	a	single	file	for	upload	but
it	may	make	uploading	the	files	easier.	To	zip	all	the	files	together	make	sure	the	files	are	in	the	same
directory.

tar	-czf	<hostname>_applicationLogs.tar.gz	/path/to/directory-or-file

Then	upload	the	files	to	the	Ticket.

curl	--upload-file	<hostname_applicationLogs>.tar.gz	\

				https://uploads.couchbase.com/<customer>/<ticket>/

Networking	Logs

Support	Best	Practices

7Couchbase	Professional	Services

https://support.couchbase.com/hc/en-us/articles/218320083-Working-with-the-Couchbase-Technical-Support-Team
https://docs.couchbase.com/java-sdk/current/collecting-information-and-logging.html
https://docs.couchbase.com/python-sdk/current/collecting-information-and-logging.html
https://docs.couchbase.com/dotnet-sdk/current/collecting-information-and-logging.html
https://docs.couchbase.com/php-sdk/current/collecting-information-and-logging.html
https://docs.couchbase.com/c-sdk/current/collecting-information-and-logging.html
https://docs.couchbase.com/go-sdk/current/collecting-information-and-logging.html
https://docs.couchbase.com/nodejs-sdk/current/collecting-information-and-logging.html

Wireshark/tshark

Use	the	following	command	on	each	Application	node	connecting	to	Couchbase.	Let	the	collection	run	for	a
few	minutes.	The	pcap	filename	needs	to	be	named	for	the	node	it	was	run	on	and	all	of	the	Couchbase
nodes	need	to	be	included	in	the	list	of	hostnames.	Then	upload	the	pcap	files	to	the	ticket.	It	is	imperative
that	the	problem	indicated	in	the	ticket	is	reproduced	during	the	collection	of	these	pcaps.

tshark	-w	<hostname>.pcap	-F	pcap	host	<ip/hostname>	or	<ip/hostname>	or	...

To	read	a	pcap	file	use	the	following	command:

tshark	-r	<hostname>.pcap

Then	upload	the	files	to	the	Ticket.

curl	--upload-file	<hostname>.pcap	https://uploads.couchbase.com/<customer>/

<ticket>/

Couchbase	Lite	Logs

Couchbase	Lite	CBL2.5	and	greater

This	version	of	Couchbase	Lite	supports	both	console	based	logging	and	file	based	logging.	By	default
console	based	logging	is	enabled	and	accessible	through	adb	for	Android	or	NSLog	for	iOS.	File	based
logging	is	disabled	by	default.	Connecting	to	console	based	logging	and	getting	logs	off	of	devices	is	outside
the	scope	of	this	guide.

Configuring	and	enabling	logging	is	language	dependent.	See	the	links	below	for	specific	languages.

java
swift
JavaScript
objective-c
C#

This	is	an	example	of	how	to	configure	file	based	logging	in	java.

final	File	path	=	context.getCacheDir();

Database.log.getFile().setConfig(new	LogFileConfiguration(path.toString()));

Database.log.getFile().setLevel(LogLevel.INFO);

Couchbase	Lite	earlier	than	CBL2.5

The	log	messages	are	split	into	different	domains	(LogDomains)	which	can	be	tuned	to	different	log	levels.
The	following	example	enables	verbose	logging	for	the	replicator	and	query	domains.

Support	Best	Practices

8Couchbase	Professional	Services

https://docs.couchbase.com/couchbase-lite/current/java.html#logging
https://docs.couchbase.com/couchbase-lite/current/java.html#logging
https://docs.couchbase.com/couchbase-lite/current/java.html#logging
https://docs.couchbase.com/couchbase-lite/current/java.html#logging
https://docs.couchbase.com/couchbase-lite/current/java.html#logging

java

Database.setLogLevel(LogDomain.REPLICATOR,	LogLevel.VERBOSE);

Database.setLogLevel(LogDomain.QUERY,	LogLevel.VERBOSE);

swift

Database.setLogLevel(.verbose,	domain:	.replicator)

Database.setLogLevel(.verbose,	domain:	.query)

General	Support	Best	Practices
Recommendation:	Have	an	Incident	Leader

A	leader	should	be	chosen	to	manage	the	discussion	on	each	incident.	That	leader	should	manage	the
conversation.
Often	a	thread	of	investigation	can	be	cut	off	before	it	bears	fruit	because	someone	on	the	call	has	a
different	opinion	of	the	potential	problem	or	simply	doesn’t	understand	the	current	investigation	and
pushes	their	own	agenda.

Recommendation:	Keep	an	Incident	Log

This	leader	should	be	responsible	(perhaps	through	delegation)	for	the	keeping	of	an	incident	log.	While
ultimately	this	log	should	be	transcribed	to	an	official	report,	the	best	place	to	keep	a	running	log	is	in	the
chat	window	of	a	Webex	(or	other)	call.	This	allows	someone	who	joins	a	call	to	catch	up	on	what	has
happened,	what	has	been	discussed,	and/or	what	has	been	tried	so	far.	Webex	chat	is	supported	across
many	platforms	and	is	available	to	anyone	invited	to	the	call,	including	vendors	or	people	who	may	not
be	at	their	work	desks.

Recommendation:	Have	Architectural	Documents	Ready

You	can	reduce	MTTR	significantly	by	reducing	the	number	of	questions	that	need	to	be	asked	during
the	incident.	Having	information	prepared	can	help	expedite	suggestions	for	remedial	action	and
improve	the	accuracy	and	likelihood	of	success	of	any	suggestions.
For	Couchbase,	some	information	is	standard,	such	as:

Product	version,	including	server	and	SDKs	used
Cluster	size
Layout	of	Couchbase	services
Peak	document	count,	average	document	size,	normal	document	growth	rates
Overall	data	size	and	average	data	residency
Types	of	buckets	used	(Couchbase,	Ephemeral,	Memcached)	and	the	ejection	types	(Value,	Full)

For	any	architecture,	it	is	important	to	have
Information	about	the	underlying	hardware	and/or	virtualization	platform

Support	Best	Practices

9Couchbase	Professional	Services

Upstream	and	downstream	applications
It	is	also	critical	to	have	an	accurate	history	maintained	of	changes	to	the	system,	such	as	version
upgrades,	nodes	added/removed/restarted	etc.	These	events	should	be	logged	when	they	happen	so
that	an	accurate	history	doesn’t	need	to	be	recreated	during	an	incident.
Ideally,	a	(potentially	sanitized)	version	of	this	information	should	be	made	available	to	any	Couchbase
Support	Engineers	working	the	incident.

Recommendation:	Progress	through	well	defined	Incident	Stages

There	should	be	an	ordered	progression	to	the	incident	investigation.
Suggested	steps	would	be:

Preservation	of	logs	and	timeline	of	events	preceding	the	incident
Resumption	of	service
Root	Cause	Analysis
Remediation

Recommendation:	Upload	all	available	logs	to	a	Support	Ticket	as	soon	as	possible

Updating	logs	takes	time.	Having	Couchbase	support	request	logs	takes	additional	time.	Please	upload
all	available	logs	immediately	after	opening	a	ticket.
In	most	cases,	these	logs	are	used	for	Root	Cause	Analysis,	so,	log	preservation	and	resumption	of
service	should	already	have	occurred.
Ideally,	the	customer	should	be	capable	of	resuming	service	without	the	help	of	Couchbase	Support.	If
help	is	needed	to	achieve	resumption	of	service,	the	priority	of	uploading	all	logs	should	be	increased.

Recommendation:	Have	Additional	Servers	ready	to	deploy	in	each	environment

Cloud	native	technologies	are	designed	to	have	failing	nodes	replaced	with	additional	nodes.

Recommendation:	Properly	Size	your	Machines	&	Cluster

Cloud	database,	including	Couchbase,	are	designed	to	partition	their	load	across	multiple	machines.
They	are	also	designed	to	heal	if	a	machine	is	lost	and/or	removed	from	the	cluster.	For	Couchbase,	this
is	either	a	Failover,	Recovery	or	Rebalance.	There	must	be	enough	additional	resources	in	the	cluster	to
perform	the	recovery	options.

Recommendation:	Triage	from	the	Top	Down

Triage	gives	clarity	to	the	person	trying	to	restore	service	because	they	know	clearly	what	they	‘don’t
have	to	worry	about’.
Triage	has	to	start	with	the	system	as	a	whole,	not	a	particular	component.	Develop	a	series	of	scripts
particular	to	your	environment	and	application	that	could	validate	which	systems	were	responding	and
which	were	not.

Support	Best	Practices

10Couchbase	Professional	Services

Recommendation:	Avoid	Bias

Experienced	Support	Engineers	(like	doctors)	will	often	ignore	your	specific	complaint	until	they	have	run
through	a	series	of	tests	or	looked	at	key	indicators	in	the	logs.	While	this	is	part	of	a	triage	process,	it
also	avoids	observation	bias.	Bias	can	be	introduced	by	any	of	the	following	factors:

This	is	the	area	of	the	system	where	the	problem	is	manifesting	or	is	observed	-	this	isn’t
necessarily	where	the	problem	is	caused
This	part	of	the	architecture	is	the	newest	or	has	caused	us	problems	before	-	while	a	useful
observation,	this	can	cause	your	analysis	to	focus	on	the	wrong	component
The	problem	can’t	be	in	the	area	of	the	stack	that	I’m	responsible	for	-	personal	pride	could	impede
investigation	into	the	area	potentially	responsible	for	the	problem
I	don’t	understand	that	part	of	the	architecture	-	can	lead	to	either	avoidance	or	undue	focus	on	one
part	of	the	architecture

One	of	the	prime	roles	of	the	Incident	Leader	it	to	avoid	bias	and	ensure	all	options	are	considered	until
effectively	ruled	out.

Recommendation:	Test	Tickets

New	applications	that	are	preparing	to	go	into	production	should	go	through	the	process	of	creating	a
Test	ticket	to	make	sure	there	are	no	impediments	to	updating	logs.

Providing	internal	tier	one	Support

Escalation	path

1.	 Internal	Support	(Center	of	Excellence)
2.	 If	the	issue	is	related	to	debugging	a	product	fault	internal	support	should	contact	Couchbase	technical

support	with	the	appropriate	priority	level
3.	 If	the	issue	is	related	to	reviewing	Architecture,	index	definitions,	query	syntax,	or	client	SDK	code,

internal	support	should	contact	Solutions	Engineer	or	professional	services	representative.
4.	 Depending	on	the	way	to	resolve	your	issue	your	ticket	may	be	referred	to	Engineering.

Building	an	internal	support	team

To	start	with,	when	building	an	internal	tier	one	support	team	it	is	important	that	those	providing	the	support
review	and	understand	all	of	the	following	guides	and	best	practices.

Backup	and	Restore	Guide
Cluster	Setup
Data	Modeling
Development	Best	Practices
Monitoring
Security
Testing

If	the	use	case	involves	query:

N1QL	Tuning

Support	Best	Practices

11Couchbase	Professional	Services

With	a	strong	understanding	of	those	guides,	one	should	be	able	to	provide	support	for	most	tier	one	support
issues.

Timeouts	and	RTO

Sometimes,	client	to	Couchbase	interactions	can	timeout.	If	you	are	having	issues	with	timeouts,	using	the
open-tracing	API	may	help	determine	the	cause	or	where	the	timeout	is	actually	happening.	How	to	use
open-tracing	is	language	dependent.	The	exposure	of	these	APIs	will	allow	you	to	use	other	tools	like
jaegertracing	or	other	commercial	products	to	dig	into	where	the	timeouts	are	happening.

Java
Python
.Net
PHP
C
Go
Node.js

Response	Time	Observability	(RTO)	is	part	of	open-tracing	and	as	four	parts:

Data	Service	(KV	Engine):	Logs	KV	operations	that	exceed	a	threshold
Threshold	Logging	(SDK):	Logs	requests	that	exceed	a	per-service	threshold
Orphan	Logging	(SDK):	Log	responses	when	the	request	has	timed	out
Improved	Timeout	Messages	(SDK)

Data	Service

Data	Service	Tracing	must	first	be	enabled	to	use	RTO	on	the	data	service.

curl	-u	Administrator:password	-X	POST	localhost:8091/pools/default/settings

/memcached/global	\

				--data	tracing_enabled=true/false

Which	then	gives	the	following	messages	in	the	memcached.log

2018-07-17T15:30:05.308518Z	INFO	37:	HELO	[{"a":"libcouchbase/2.9.2	(Darwin-

17.6.0;	x86_64;	\

				Clang	9.1.0.9020039)","i":"00000000b35f58aa/39cc1fd4eeaf1d67"}]	\

				TCP	nodelay,	XATTR,	XERROR,	Select	bucket,	Snappy,	JSON,	Tracing	\

				[127.0.0.1:55200	-	127.0.0.1:11210	(not	authenticated)]

...

2018-07-17T15:30:07.084239Z	WARNING	37:	Slow	operation.	\

				{"cid":"00000000b35f58aa/39cc1fd4eeaf1d67/0","duration":"1771	ms",	\

				"trace":"request=329316910555375:1771975	\

													get=329316911686879:35	\

													bg.wait=329316911701108:4715	\

													bg.load=329318677724103:1766022	\

													get=329318682489143:21",

				"command":"GET","peer":"127.0.0.1:55200"}

Support	Best	Practices

12Couchbase	Professional	Services

https://docs.couchbase.com/java-sdk/current/threshold-logging.html#open-tracing
https://docs.couchbase.com/python-sdk/current/threshold-logging.html#open-tracing
https://docs.couchbase.com/dotnet-sdk/current/threshold-logging.html#open-tracing
https://docs.couchbase.com/php-sdk/current/threshold-logging.html#open-tracing
https://docs.couchbase.com/c-sdk/current/threshold-logging.html#open-tracing
https://docs.couchbase.com/go-sdk/current/threshold-logging.html#open-tracing
https://docs.couchbase.com/nodejs-sdk/current/threshold-logging.html#open-tracing

Name Definition Comments

request From	KV-Engine	receiving	request	(from
OS)	to	sending	response	(to	OS).

Overall	KV-Engine	view	of	the
request.

bg.wait From	KV-Engine	detecting	background
fetch	needed,	to	starting	to	read	from	disk.

Long	duration	suggests	contention
on	Reader	Threads.

bg.load From	KV-Engine	starting	to	read	from	disk
to	loading	the	document.

Long	duration	suggests	slow	disk
subsystem.

get From	KV-Engine	parsing	a	GET	request	to
processing	it.

For	docs	which	are	not	resident,
you'll	see	two	instances	of	this	span.

get.if From	KV-Engine	parsing	a	GET	_IF	request
to	processing	it.

Similar	to	get,	but	used	for	certain
request	(e.g.	XATTR	handling)

get.stats From	KV-Engine	parsing	a	STATS	request
to	processing	it.

Different	STATS	keys	have	different
costs	(e.g.	disk	stats	are	slower).

store From	KV-Engine	parsing	a	STORE	request
to	processing	it.

Typically	fast	(as	only	has	to	write
into	HashTable).

set.with.meta From	KV-Engine	parsing	a
SET_WITH_META	request	to	processing	it.

Similar	to	store	but	for	XDCR	/
restore	updates.

SDK	Logging

SDK	Logging	is	on	by	default.	Below	is	an	example	from	an	RTO	Log.

{

		"service":	"kv",

		"count":	15,

		"top":	[

				{

						"operation_name":	"get",

						"last_operation_id":	"0x21",

						"last_local_address":	"10.211.55.3:52450",

						"last_remote_address":	"10.112.180.101:11210",

						"last_local_id":	"66388CF5BFCF7522/18CC8791579B567C",

						"total_duration_us":	18908,

						"encode_us":	256,

						"dispatch_us":	825,

						"decode_us":	16,

						"server_duration_us":	14

				}

]

}

Name Definition Comments

operation_name Type	of	operation

Support	Best	Practices

13Couchbase	Professional	Services

last_operation_id A	combination	of	type	of
operation	and	ID

Useful	for	troubleshooting	in
combination	with	the	local_id

last_local_address The	local	socket	used	for	this
operation

last_remote_address Socket	used	on	server	for	this
request

Useful	when	determining	which	node
processed	this	request

last_local_id This	ID	is	negotiated	with	the
server

Can	be	used	to	correlate	logging
information	on	both	sides

total_duration_us The	total	time	it	took	to	perform
the	full	operation

encode_us Time	the	client	took	to	encode	the
request

Is	longer	the	larger	and	more	complex
the	json

dispatch_us
Time	from	when	client	to	sent	the
request	to	when	it	got	a	response
into	the	clients	ring	buffer

Amount	of	time	spent	traversing	the
network	can	be	found	by	subtracting
dispatch_us	-	server_duration_us

decode_us Time	the	client	took	to	decode	the
response

Is	longer	the	larger	and	more	complex
the	json

server_duration_us Time	the	server	took	to	do	its
work. -

Orphan	Logging

This	is	enabled	by	default	in	the	SDK.	This	aggregates	responses	where	the	request	has	timed	out.	ie	KV	get
exceeds	time	out,	error	returned	to	application,	response	received	some	time	afterwards.	The	log	interval	is
10	seconds	at	the	WARN	level,	and	has	a	Per-service	sample	size	of	10.	Below	is	an	example	of	an	orphan
log.

{

		"service":	"kv",

		"count":	2,

		"top":	[

				{

						"s":	"kv:get",

						"i":	"0x21",

						"c":	"66388CF5BFCF7522/18CC8791579B567C",

						"b":	"default",

						"l":	"192.168.1.101:11210",

						"r":	"10.112.181.101:12110",

						"d":	120

				}

]

}

Name Definition

s Service	type

i Operation	ID

Support	Best	Practices

14Couchbase	Professional	Services

c Connection	ID

b Bucket

l LocalEndpoint	and	Port

r Remote	Endpoint	and	Port

d Duration	(us)

t Timeout

Combining	these	three	logs,	a	troubleshooter	should	be	able	to	trace	timings	all	the	way	from	the	client	to
server	and	back.	This	should	help	identify	any	operations	that	timed	out,	or	are	performing	slowly.	Providing
this	information	to	support	will	greatly	help	in	determining	the	cause	of	timeouts.

Restarting	services

On	each	Couchbase	node	there	are	multiple	services	running	to	maintain	Couchbase	and	provide	the
services	needed	for	operation.	At	times,	and	normally	with	the	guidance	of	support,	it	may	be	necessary	to
restart	some	of	those	services	in	a	recovery	effort	from	degraded	operations.	A	complete	list	of	processes
can	be	found	at	https://docs.couchbase.com/server/current/install/server-processes.html

Cluster	Manager

What	it	does:	Provides	admin	UI	&	RESTful	administrative	APIs,	coordinates	cluster	membership,	manages
rebalancing,	etc.

Why	to	restart:	Connections	not	being	released,	rebalance	that	won’t	‘stop’

Impact	of	restarting:

Should	not	impact	operations	unless	it	doesn’t	restart	faster	than	the	auto-failover	timeout.	In	that	case
restarting	may	cause	a	failover.

How:

curl	--data	“erlang:halt().”	-u	<Administrator>:<password>	http://<host>:809

1/diag/eval

Support	Best	Practices

15Couchbase	Professional	Services

https://docs.couchbase.com/server/current/install/server-processes.html

Memcached

What	it	does:	This	is	the	data	service.	It	manages	all	the	vbuckets	and	the	data	within	the	vbuckets.

Why	to	restart:

Do	not	restart	without	guidance	from	support.
This	would	be	done	if	a	hard	failover	of	a	node	was	needed	and	the	UI	was	unavailable.

Impact	of	restarting:	Causes	a	hard	failover	of	the	data	node.

How:

pkill	memcached

Projector

What	it	does:	This	process	runs	on	each	Data	node.	It	consumes	DCP	messages,	Filters	and	formats	index
entries,	and	sends	those	messages	to	the	indexer.

Why	to	restart:

New	index	build	seems	‘stuck’
items_queued	+	items_pending	increasing	and	not	going	down

Impact	of	restarting:

Should	continue	from	last	checkpoint,	no	direct	effect	on	inflight	ops
Likely	already	affecting	At_plus	or	Request_plus	queries

How:

pkill	projector

Indexer

What	it	does:	The	indexer	runs	on	each	Index	node.	It	manages	index	records	in	memory	&	disk.	This
process	is	invoked	by	query	engine	to	select	query	candidates.

Why	to	restart:

Memory	use	of	the	indexer	process	is	growing	without	bound
Existing	memory	leak	of	metadata	(fixed	in	6.0.2)

Impact	of	restarting:

Inflight	queries	may	fail	if	they	are	using	indexes	maintained	by	this	indexer.	YOUR	CLIENTS	SHOULD
CODE	FOR	THIS	EVENT
Assuming	you	have	redundant	index	definitions	no	impact	should	occur	to	new	queries.

Support	Best	Practices

16Couchbase	Professional	Services

How:

pkill	indexer

Query	Service

What	it	does:	The	query	service	runs	on	each	Query	node.	Each	N1QL	query	is	assigned	to	one	node.	Calls
from	the	query	service	go	out	to	Index	service,	Data	Service	and	FTS	Service	as	required

Why	to	restart:

Memory	use	growing	without	bound

Impact	of	restarting:

Inflight	queries	will	fail	if	they	are	assigned	to	this	query	node.	YOUR	CLIENTS	SHOULD	CODE	FOR
THIS	EVENT
New	queries	will	not	go	to	this	node	and	should	be	fine

How:

pkill	cbq-engine

XDCR	Service

What	it	does:	the	goxdcr	process	runs	on	each	Data	node.	It	has	responsibilities	for	data	replication	work
done	on	both	source	&	target	side.

Why	to	restart:

High	CPU	usage
Connection	timeouts	in	log
changes_left	stat	increasing	without	going	back	down
bandwidth_usage	stat	at	0

Impact	of	restarting:

Will	restart	from	last	checkpoint,	may	see	a	temporary	increase	in	CPU	&	bandwidth	usage

How:

pkill	goxdcr

Support	Best	Practices

17Couchbase	Professional	Services

	Notice and Disclaimer
	Support Best Practices

